Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the modern ocean, the transformation of light surface waters to dense deep waters primarily occurs in the Atlantic basin rather than in the North Pacific or Southern Oceans. The reasons for this remain unclear, as both models and paleoclimatic observations suggest that sinking can sometimes occur in the Pacific. We present a six-box model of overturning that combines insights from a number of previous studies. A key determinant of the overturning configuration in our model is whether the Antarctic Intermediate Waters are denser than the northern subpolar waters, something that depends on the magnitude and configuration of atmospheric freshwater transport. For the modern ocean, we find that although the interbasin atmospheric freshwater flux suppresses Pacific sinking, the poleward atmospheric freshwater flux out of the subtropics enhances it. When atmospheric temperatures are held fixed, North Pacific overturning can strengthen with either increases or decreases in the hydrological cycle, as well as under reversal of the interbasin freshwater flux. Tipping-point behavior, where small changes in the hydrological cycle may cause the dominant location of densification of light waters to switch between basins and the magnitude of overturning within a basin to exhibit large jumps, is seen in both transient and equilibrium states. This behavior is modulated by parameters such as the poorly constrained lateral diffusive mixing coefficient. If hydrological cycle amplitude is varied consistently with global temperature, northern polar amplification is necessary for the Atlantic overturning to collapse. Certain qualitative insights incorporated in the model can be validated using a fully coupled climate model. Significance StatementCurrently, the global overturning circulation involves the conversion of waters lighter than Antarctic Intermediate Water to deep waters denser than Antarctic Intermediate Water primarily in the North Atlantic, rather than in the North Pacific or Southern Oceans. Many different factors have been invoked to explain this configuration, with atmospheric freshwater transport, basin geometry, lateral mixing, and Southern Ocean winds playing major roles. This paper develops a simple theory that combines previous theories, presents the intriguing idea that alternate configurations might be possible, and identifies multiple possible tipping points between these states.more » « less
-
Cybersecurity threats continue to increase and are impacting almost all aspects of modern life. Being aware of how vulnerabilities and their exploits are changing gives helpful insights into combating new threats. Applying dynamic topic modeling to a time-stamped cybersecurity document collection shows how the significance and details of concepts found in them are evolving. We correlate two different temporal corpora, one with reports about specific exploits and the other with research-oriented papers on cybersecurity vulnerabilities and threats. We represent the documents, concepts, and dynamic topic modeling data in a semantic knowledge graph to support integration, inference, and discovery. A critical insight into discovering knowledge through topic modeling is seeding the knowledge graph with domain concepts to guide the modeling process. We use Wikipedia concepts to provide a basis for performing concept phrase extraction and show how using those phrases improves the quality of the topic models. Researchers can query the resulting knowledge graph to reveal important relations and trends. This work is novel because it uses topics as a bridge to relate documents across corpora over time.more » « less
An official website of the United States government
